Bayesian Optimization Framework for HVAC System Control

نویسندگان

چکیده

The use of machine-learning algorithms in optimizing the energy efficiency HVAC systems has been widely studied recent years. Previous research focused mainly on data-driven model predictive controls and reinforcement learning. Both approaches require a large amount online interactive data; therefore, they are not efficient stable enough for large-scale practical applications. In this paper, Bayesian optimization framework control proposed to achieve near-optimal performance while also maintaining high stability, which would allow it be implemented number projects obtain benefits. includes following: (1) method modeling problems as contexture technology automatically constructing samples, based time series raw trending (2) Gaussian process regression surrogate objective function optimization; (3) loop, optimized characteristics system controls, including an additional exploration trick noise estimation mechanism ensure constraint satisfaction. was evaluated by using simulation system, calibrated data from real center. results our study showed that approach achieved more than 10% increase energy-efficiency savings within few weeks compared with original building automation control.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Ventilation Control for Building Hvac Performance Optimization

Optimal building ventilation control is achieved combining demand controlled ventilation (DCV) and economizer control. The control instability during the transition processes between different control modes is among the major difficulties faced when combining DCV control with economizer control in applications. A robust control strategy, using “freezing”, gain scheduling, I-term reset and feedb...

متن کامل

فرآیند کنترل در سیستم کامپیوتری تهویه مطبوع ‏‎airwasher environmental control system for intelligent buildings‎‏

در این پایان نامه با استفاده از تکنولوژی روز و امکانات داخل کشور طریقه اتوماسیون سیستم تاسیساتی یک کارخانه نساجی (کارخانه نساجی اطلس پود) همراه با منوهای مربوطه و توضیحات کامل برنامه نویسی و طراحی بلوک های برنامه و سایر قسمتهای برنامه ارائه گشته است. علاوه بر این، برنامه با نمونه آمریکایی آن مقایسه و مزیت های آن نسبت به آمریکایی توضیح داده شده است. همچنین تمامی بلوک های برنامه بصورت شماتیکی بطو...

15 صفحه اول

Dynamic Optimization Technique for Control of Hvac System Utilizing Building Thermal Storage

This paper proposes a dynamic optimization technique for building heating and cooling systems. The proposed algorithm returns trajectories for space temperature setpoints throughout a specified period that will minimize objective functions such as running cost or peak energy consumption. It can be applied to buildings for which the thermal mass allows various choices of temperature setpoints. T...

متن کامل

Dynamic model of an HVAC system for control analysis

This paper describes a procedure for deriving a dynamic model of an HVAC system that consists of a zone, heating coil, cooling and dehumidifying coil, humidifier, ductwork, fan, and mixing box. In particular, the interest is centered on control strategies to reduce energy consumption and improving the quality of the indoor environment. Indoor temperature and humidity may be maintained at set po...

متن کامل

Nonlinear and Switching Control for the HVAC System

In this paper, we integrate nonlinear control and supervisory control theory to design a controller of a heating, ventilating and air conditioning (HVAC) system. First we design the nonlinear controllers by Lyapunov theory and backstepping. Then we create the discrete abstraction of this system and thus derive the discrete event system model from the continuous plant. Finally we design the supe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Buildings

سال: 2023

ISSN: ['2075-5309']

DOI: https://doi.org/10.3390/buildings13020314